INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Motivation)

The semantics of very few languages can be formally stated.
OCCAM 2 is a noble example. This feature of OCCAM 2 permits
to formally specify and verify OCCAM 2 programs. For example
it is possible to prove that a particular OCCAM 2 program is (or
is not) deadlock free.

Another use for this formalism: To transform one OCCAM 2
program into another, that would be, in some sense, equivalent
to the original. Possible motivations:

1. To change a clear but inefficient program into an
efficient but perhaps obscure one.

2. To change a sequential program into a parallel one
to exploit the existing hardware.

3. To change a concurrent program into a sequential
one for improved execution on a single processor.

4. To change a physically unfeasible program into
a physically feasible one.

PROGRAM TRANSFORMATIONS v.1 -1 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Intuitive introduction)

The rules governing transformations of SEQ, IF, PAR and ALT
may be used to exploit processor configurations.

Example 1: The rule for replacing SEQ by PAR says that SEQ
can be replaced by PAR if its processes use disjoint sets of
variables and channels (or, at least, the common variables or
channels are read only).

Consider:

SEQ
Y :
zZ :

F(X)
G(X)

is equivalent to:

PLACED PAR
PROCESSOR 1 <some_type>
Y := F(X)
PROCESSOR 2 <some_type>
Z := G(X)

PROGRAM TRANSFORMATIONS v.1 -2 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Intuitive introduction continued)

Example 2: Consider:

SEQ
chl 72 A
GetX (A, X)
Y :=X /7 2.0
GetzZ(Y, Z)
ch2 ! Z

When introducing a new channel, the above is equivalent to:

—— definition of new channel New.Chan

PAR

SEQ
chl 7?7 A
GetX (A, X)
New.Chan ! X /7 2.0

SEQ
New.Chan 7?7 Y
Getz(Y, Z)
ch2 ! 2

PROGRAM TRANSFORMATIONS v.1 -3 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Notation)

To simplify the presentation of OCCAM 2 syntax, we will use
brackets. For example, instead of:

SEQ
A

B
C

we will write:

SEQ (A, B, C)

Where a construct is considered to have an arbitrary number of
components, say n, we will write:

n

n n
PAR R SE1Q S, 7A=L1Tg, P /I=F1 b.p;

PROGRAM TRANSFORMATIONS v.1 -4 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
Rule 1: SEQ () = SKIP

Rule 2: PAR () = SKIP

Laws of Associativity:

Rule 3: SEQ (P, Q, R) = SEQ (P, SEQ (Q, R))
Rule 4: PAR (P, Q, R) = PAR (P, PAR (Q, R))

Let Ci= (bi, pi) be pairs of Boolean expressions and
subprocesses, then:

Rule 5: IF (C1, IF (C2), C3) = IF (C1, C2, C3)

Similarly, let Gi= (gi, pi) be pairs of guards and subprocesses,
then:

Rule 6: ALT (G1, ALT (G2), G3) = ALT (G1, Gz, G3)

From Rule 5: If an IF construct has no Boolean expressions,
none can evaluate to TRUE. Similarly (from Rule 6), if an ALT
construct has no guards, none can be ready. Therefore:

Rule 7: IF () = STOP
Rule 8: ALT () = STOP

Rule 5 applies to one form of nesting IF constructors, where an
inner IF is in place of the usual (b, p). Another form of nesting
is derived when an inner IF is in place of the p subprocess. In
such a case:

PROGRAM TRANSFORMATIONS v.1 -5 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Continued)

Rule 9: IF (C, b1, IF (b2, p)) = IF (C, IF (b1 AND b2, p))

NOTE: the above rule is valid if the inner IF is the last
subprocess; alternatively, it is valid in any position if the inner IF
is complete. A complete IF constructor is one that is guaranteed
to have a Boolean expression that evaluates to TRUE. Any IF
construct can be made complete by adding at its end:

TRUE
STOP
Laws of Symmetry:
n n
Rule 10: PAR B =PAR) where ()
is any permutation of
n n the values {1, 2, ..., n}
Rule 11: ALTG, = ALTG

PROGRAM TRANSFORMATIONS v.1 -6 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Continued)

The standard IF construct cannot be so rearranged.

However, if the Boolean expressions are pairwise disjoint, such
rearrangement is possible. The Boolean expressions are said to
be pairwise disjoint, if only one can be TRUE for any set of
values for the associated variables. For example, the following
IF construct has this property:

IF
X

X

X

<A I <V
1
o

So, we have the law:

n

n
Rule 12: II=F1b,P, = II=F1bn(,)pn(,)

provided that bi AND bj= TRUE implies i = j.

PROGRAM TRANSFORMATIONS v.1 -7 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Continued)

Replacement of SEQ by PAR.

Rule 13: SEQ (P, R) = PAR (P, R)

provided that P and R use disfoint sets of variables and
channels. (Indeed, the replacement can still take place if there
are shared variables, as long as P and R both read them).

Rule 14: PAR (c!x,c?y)=y:=Xx
or, stating it the other way around:

Rule 15: SEQ (P, x:=y, Q) =
CHAN OF Proper.Protocol z:
PAR (SEQ (P, z!y), SEQ (2 ? x, Q))

Examples for the usage of these rules have been given in the
intuitive introduction to OCCAM 2 transformation rules.

PROGRAM TRANSFORMATIONS v.1 -8 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Continued)

Laws of declarations.
Declarations are associative:

Rule 16: Ta: (Tb:P)=Ta,b:P
where P is some process
and T is any valid type.

Declarations can be eliminated if they are not used:
Rule 17: Ta:P=P if a is not used in P.
Declarations can be moved within a program:

Rule 18: SEQ (T a:P,Q)=Ta: SEQ (P, Q)
provided a is not used in Q.

Rule 19: SEQ (P, Ta: Q) =T a: SEQ (P, Q)
provided a is not used in P.

Similar laws exist that apply to ALT, IF and PAR constructs.

PROGRAM TRANSFORMATIONS v.1 -9 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES

(Continued)

Increasing parallelism.

Let W stand for WHILE TRUE (infinite loop) in OCCAM 2, then:

Rule 20: \%% (SEQ (Pi Q, R) =
SEQ (P, W (SEQ (Q, R, P)))

To appreciate this law, consider this example:

WHILE TRUE
SEQ
in ? x
y := X ¥ X
out ! y

Applying Rules 20 and 13, the code becomes:

SEQ -- after rule 20
in ? x
WHILE TRUE
SEQ
y := X ¥ X
out ! y
in 7 x
SEQ -- after rules 20 and 13
in 7 x
WHILE TRUE
SEQ
y 1= X ¥ X
PAR
out ! y
in 7 X

PROGRAM TRANSFORMATIONS v.1 - 10 -

© V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Continued)

Unraveling a replicated SEQ.
n n-1
RU/e 21: ’,S_EQ(P, ’ Q,) = SEQ(BIIS_E1Q(Q,: e.”)’ Q n)

The above is a generalization of the Rule 20, which applied to
the WHILE TRUE loops.

PROGRAM TRANSFORMATIONS v.1 - 11 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: TRANSFORMATION RULES
(Continued)

Distributivity.

Rule 22: PAR (SEQ (A, B), SEQ (C, D)) =
SEQ (PAR (A, C), PAR (B, D))

To illustrate the power of this law, consider the following code:

PAR
SEQ
c ! x
Pl
SEQ
c?y
P2

After applying rule 22, the code becomes:

SEQ
PAR
c ! X
c?7y
PAR
Pl
P2

After applying rules 22 and 14, this reduces to:

SEQ

PROGRAM TRANSFORMATIONS v.1 - 12 - © V. Wojcik, 1993

INTRODUCTION TO PARALLEL COMPUTING

REFERENCES
AND RECOMMENDED READING
(On CSP and OCCAM 2)

Hoare, C.A.R.: Communicating Sequential Processes, Prentice
Hall, 1985.

INMOS Ltd.: OCCAM 2 Reference Manual, Prentice Hall, 1988.
Burns, A.: Programming in OCCAM 2, Addison Wesley, 1988.

Roscoe, A.W., and Hoare, C.A.R.: The Laws of OCCAM Pro-
gramming, Oxford University Programming Research
Group, PRG-53, 1986.

Pountain, R., and May, D.: A Tutorial Introduction to OCCAM
Programming, (second, amended edition), Blackwell
Scientific Publications Ltd., 1988.

Jones, G. and Goldsmith, M.: Programming in OCCAM 2, Pren-
tice Hall, 1988.

PROGRAM TRANSFORMATIONS v.1 - 13 - © V. Wojcik, 1993

